The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion.
نویسندگان
چکیده
Motion is a potent cue for the perception of three-dimensional (3D) shape in primates, but little is known about its underlying neural mechanisms. Guided by recent functional magnetic resonance imaging results, we tested neurons in the fundus of the superior temporal sulcus (FST) area of two macaque monkeys (Macaca mulatta, one male) using motion-defined surface patches with various 3D shapes such as slanted planes, saddles, or cylinders. The majority of the FST neurons (>80%) were selective for stimuli depicting specific shapes, and all the surfaces tested were represented among the selective FST neurons. Importantly, this selectivity tolerated changes in speed, position, size, or between binocular and monocular presentations. This tolerance demonstrates that the 3D structure-from-motion (3D-SFM) selectivity of FST neurons is a higher-order selectivity, which cannot be reduced to a lower-order speed selectivity. The 3D-SFM selectivity of FST neurons was unaffected by removal of the opposed-motion cue that supplemented the speed gradient cue in the standard stimuli. When tested with the same standard stimuli, fewer neurons in the middle temporal/visual 5 (MT/V5) area were selective than FST neurons. In addition, selective MT/V5 neurons represented fewer types of surfaces and were less tolerant of stimulus changes than FST neurons. Overall, these results indicate that FST neurons code motion-defined 3D shape fragments, underscoring the central role of FST in processing 3D-SFM.
منابع مشابه
Faces in motion: selectivity of macaque and human face processing areas for dynamic stimuli.
Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. F...
متن کاملFunctional differentiation of macaque visual temporal cortical neurons using a parametric action space.
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends....
متن کاملThree-dimensional structure-from-motion selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey.
Human and non-human primates are able to perceive three-dimensional structure from motion displays. Three-dimensional structure-from-motion (object-motion) displays were used to test the hypothesis that neurons in the anterior division of the superior temporal polysensory area (STPa) of monkeys can selectively respond to three-dimensional structure-from-motion. Monkeys performed a reaction time...
متن کاملSelectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex.
The anterior part of the macaque inferior temporal cortex, area TE, occupies a large portion of the temporal lobe and is critical for object recognition. Thus far, no relation between anatomical subdivisions of TE and neuronal selectivity has been described. Here, we present evidence that neurons selective for three-dimensional (3D) shape are concentrated in the lower bank of the superior tempo...
متن کاملMaps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study.
The superior temporal sulcus (STS) of the macaque monkey contains multiple visual areas. Many neurons within these regions respond selectively to motion direction and to more complex motion patterns, such as expansion, contraction and rotation. Single-unit recording and optical recording studies in MT/MST suggest that cells with similar tuning properties are clustered into columns extending thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 46 شماره
صفحات -
تاریخ انتشار 2010